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Abstract: It was found that the diffraction images acquired along the side 
scattering directions with objects in a cell sample contain pattern variations 
at both the global and local scales. We show here that the global pattern 
variation is associated with the categorical size and morphological 
heterogeneity of the imaged objects. An automated image processing 
method has been developed to separate the acquired diffraction images into 
three types of global patterns. Combined with previously developed method 
for quantifying local texture pattern variations, the new method allows fully 
automated analysis of diffraction images for rapid and label-free 
classification of cells according to their 3D morphology. 
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1. Introduction 

It has become widely known that the elastically scattered light from single cells exhibits 
characteristic distributions in space if they are illuminated by a coherent beam. The features 
of the distribution have been shown theoretically and experimentally to correlate strongly 
with the morphology of the illuminated cell [1–5]. The forward and side scatters acquired 
with a conventional flow cytometer [6], however, are spatially integrated and provide very 
limited information on a cell’s morphology even with a coherent laser beam. Consequently 
one needs to pursue spatially resolved strategies of light detection in search for morphology 
based assays of cells without fluorescent labeling. Over the last two decades, measurement of 
coherent light scatters under a flow condition have attracted numerous research efforts using 
angularly resolved [7, 8] or imaging [9–14] approaches. The studies of coherent scatters 
based on the imaging approach demonstrate clearly that the images present distinctive speckle 
patterns and the pattern parameters can be associated with the sizes and distribution of 
intracellular organelles such as mitochondria [13, 14]. But the images acquired in these 
studies were of low contrast and no clear roadmaps were provided on how to effectively and 
rapidly extract multiple image parameters from the acquired data for analysis and 
classification of cells. 

Along the coherently imaging approach, we have developed a new flow cytometry 
method by combining system design improvement to acquire images of high contrast with 
automated image processing [15–19]. In this method, a jet-in-fluid design of flow chamber 
and a scheme of objective based off-focus imaging were established to significantly increase 
the image contrast by reducing light scattered off the interfaces outside the imaged cell but 
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within the field-of-view (FOV) of the cameras. In addition, we have developed image 
processing software based on the existing gray level co-occurrence matrix (GLCM) or Gabor 
transform algorithms to rapidly extract image parameters for automated classification of cells 
or characterization of particles [17, 18, 20]. We term this new method of imaging and 
analyzing cells on the flow cytometry platform as diffraction imaging flow cytometry (DIFC). 

For DIFC measurement, a cell sample in culture medium is directly injected into a core 
fluid reservoir and pressurized by a syringe pump into the core fluid nozzle. When analyzing 
the acquired data, we found that the diffraction images could present a wide range of global 
and local patterns due to the coherent superposition of the light wavefields scattered from an 
imaged cellular object and other objects in or near the FOV. These patterns are highly 
sensitive to the morphology of the imaged objects. By microscopy one can easily observe that 
a cell sample contains not only viable cells of complex internal structures but also objects of 
different sizes and morphology such as various particles secreted by cells, damaged cells with 
fragmented structures or cellular debris, among others, and their aggregates. For cancer cell 
line samples of high viability and measured shortly after taken out of a cell incubator [21], 
most of the acquired diffraction images show “normal” global patterns with many speckles of 
moderate sizes and random shapes. Some acquired images, usually 20% or less, in these 
healthy samples present “abnormal” global patterns with small numbers of speckles of large 
sizes and random shapes or stripe-like patterns of increased symmetry. In our earlier studies, 
the diffraction images of abnormal global patterns were removed manually before the 
application of GLCM algorithm based on the recognition that these images are likely caused 
by very small sized objects or objects of highly symmetric morphology [22] instead of viable 
cells. We have shown the effectiveness of the GLCM algorithm in analyzing the local 
textures of the diffraction images of normal speckle patterns for cell classification [17, 20]. 

But for samples of primary cells or cultured cells measured about 8 hours or later after 
taking out of incubator, the abnormal images can count up to 70% of the acquired data. It is 
thus necessary to investigate the morphological variations underlying the abnormal diffraction 
images and develop a method to identify them. We found, however, that the GLCM analysis 
is not a reliable tool for this task. This can be attributed to the nature of the GLCM algorithm 
which quantifies the local textures in terms of “gray-level” or intensity variations among the 
neighboring pixels instead of the global patterns of the diffraction images that are 
recognizable by naked eyes within the FOV. Therefore, it is critical to develop an objective 
and practical method to separate those diffraction images of abnormal global patterns for 
subsequent classification of the images associated with the viable cells. This is particularly 
important to obtaining the training data to ensure the accuracy of automated classification 
based on algorithms such as the support vector machine (SVM) [23, 24]. For these reasons we 
have investigated various image processing algorithms for separating the images before the 
use of GLCM algorithm for quantifying local textures. In this report, we demonstrate that the 
abnormal diffraction images are most likely due to cellular fragments or debris and present an 
automated image processing method to rapidly identify them. 

2. Methods 

Figure 1(a) presents the schematic of an experimental DIFC system with more details given in 
[15, 16, 18]. The system contains a cw laser as the coherent light source with a beam of 
532nm in wavelength, linear polarization and power variable from 10 to 160mW to illuminate 
single objects. The incident beam along the z-axis is focused on the core fluid carrying cells 
along the y-axis. The polarization direction of the incident beam can be adjusted with a half-
wave plate to horizontal, vertical and 45° from the horizontal. The light scattered by the 
imaged object is collected using a 50x infinity-corrected objective (378-805-3, Mitutoyo) of 
NA = 0.55 followed by a polarizing beam splitter in an angular range of about 36° centered 
along the x-axis. Two tube lenses behind the beam splitter focus separately the outputs from 
the objective and beam splitter assembly onto two CCD cameras (LU075M, Lumenera) for 
acquisition of a s- and p-polarized image pair of 640x480 pixels and 12-bit pixel depth. The 
CCD cameras were aligned respectively to the focal planes of the two tube lenses using a 
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stationary target and a white light source. Afterwards the imaging unit consisting of the 
objective, optics and cameras was focused on the core fluid and the focal spot of the incident 
laser beam. At this location defined as Δx = 0, the imaging unit has a resolution of about 
0.6μm and collects the scattered light over an angular range of about Δθs =  ± 18° in polar 
angle and Δφs =  ± 14° in azimuthal angle with respect to the incident beam direction or z-
axis. The imaging unit was translated as whole to an off-focus position of Δx = 100μm along 
the x-axis toward the flow chamber to acquire diffraction images with the white light source 
turn off. The off-focus imaging is necessary to obtain diffraction images that highly correlated 
to the morphology of the coherently illuminated cellular object as discussed in [16]. 

All diffraction image pairs investigated for this study were acquired from different 
suspension sample of the PC-3 cells (CRL-1435, ATCC) derived from an aggressive bone 
metastasis of a human prostatic adenocarcinoma. After data acquisition the images were 
normalized and converted into 8-bit format for later processing with the maximum, minimum 
and average pixel intensities stored. Visually the acquired diffraction images can be separated 
into three major types according to the global patterns as discussed earlier. For the 
convenience of discussion, we term each type as normal speckle, large speckle and stripe 
patterns as demonstrated by one example of the cross-polarized diffraction image pairs in 
Figs. 1(b)-1(d), respectively. In our previous numerical and experimental studies, we have 
shown that the images of the normal speckle patterns can be attributed to the coherent 
superposition of electromagnetic fields of light scattered from biological cells of sizes 5μm or 
larger with complex morphology [16, 17, 20]. In addition, we have also shown that the stripe 
patterns of high symmetry can arise from single or aggregated spheres or spherical particles 
of homogeneous structures [15, 18]. 

 

Fig. 1. (a) The schematic of the experimental DIFC system with the core and sheath fluids: WP 
= half-wave plate; FL = focusing lens; OBJ = infinity-corrected objective; PBS = polarizing 
beam splitter; CCD = camera recording either s- or p-polarized scattered light. (b) - (d): 
normalized cross-polarized diffraction image pairs labeled by polarization of the incident beam 
and scattered light, maximum, average and minimum pixel intensities of the 12-bit images. 

To gain insights on the correlation between morphology and the features of diffraction 
images, we have performed numerical simulations of light scattering by different objects 
modeling intact cells, cellular fragments and aggregates of small solid particles. A parallel 
computing software based on the discrete dipole approximation (DDA) [25–27] has been 
adopted to model light scattering by cellular objects. For this purpose, we have developed a 
Gaussian random sphere method to obtain 3D and realistic cellular structures with nucleus 
and mitochondria based on the image stacks acquired with a confocal microscope [4, 28, 29]. 
Scatterers with full and partial cellular structures were simulated with the DDA software 
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using the coordinate system shown in Fig. 1(a). The angle-resolved 4x4 Mueller matrix (Mij) 
with i or j = 1, 2, 3, 4 was first obtained and normalized by equating the full-sphere angular 
integral of the M11 element to 1 [3]. With the Mueller matrix representing a cellular object 
and a Jones vector representing a linearly polarized incident beam, we can express the ratios 
of the s- and p-polarized scattered light intensities with the incident beam intensity I0 as 

 ,45 0 11 13 21 23/ ( ) ( ),pI I M M M M° = + + +  (1) 

 ,45 0 11 13 21 23/ ( ) ( ),sI I M M M M° = + − +  (2) 

 , 0 11 12 21 22/ ( ) ( ),p verI I M M M M= − + −  (3) 

 , 0 11 12 21 22/ ( ) ( ),s verI I M M M M= − − −  (4) 

 , 0 11 12 21 22/ ( ) ( ),p horI I M M M M= + + +  (5) 

 , 0 11 12 21 22/ ( ) ( ).s horI I M M M M= + − +  (6) 

The s- and p-polarized diffraction images were simulated by projecting the angle-resolved 
elements Mij onto an area in the Z-Y place corresponding to the CCD sensor centered on the 
x-axis. We have selected an angular range of Δθs =  ± 18° and Δφs =  ± 14° for obtaining the 
simulated diffraction images according to the experimental setup. In these calculations, we do 
not consider the imaging optics used in the experimental system shown in Fig. 1(a). 
Therefore, the simulated diffraction images should only be used as a guide to understand the 
correlation between object’s morphology and cross-polarized diffraction image pairs instead 
of a tool for inverse solutions. 

3. Results and discussion 

Figure 2 shows examples of the simulated diffraction images by models of an intact cell, 
fragmented cellular structures and aggregates of different particles. For these simulations, we 
have assumed that the wavelength of the incident light beam is 532nm and all objects are 
immersed in a host medium of refractive index nh = 1.3340. Through our numerical studies, 
we found that the heterogeneity of the nucleus and large number of mitochondria have to be 
considered to obtain diffraction images of normal speckle patterns similar to those in Figs. 1 
and 3. For this purpose the refractive index inside the nucleus, nn, was set to take the values of 
[1.3797, 1.3897, 1.3997, 1.4097, 1.4197] according to the fluorescence intensity of the 
nuclear dye (Syto-61, Life Technologies) while the index of mitochondria was set as nm = 
1.4200. The refractive indices of other cellular organelles are given by nnu = 1.4397 for 
nucleoli, nnm = 1.4097 for nuclear membrane and nc = 1.3675 for cytoplasm of full cell 
structures. 

By comparing the simulated images, one can identify the two global pattern types of 
normal speckle and stripe as demonstrated respectively in Figs. 2(a) and 2(b). The diffraction 
images of normal speckle patterns can be obtained with a full and heterogeneous 3D cell 
structure built from the confocal image stacks acquired from cultured cells, double stained by 
nuclear and mitochondria fluorescent dyes [24], with equivalent diameters d ranging from 8 
to 15μm (one example with d = 10μm is shown here). Those of stripe patterns, however, were 
calculated from cellular “shells” (only one example is shown). These shell structures were 
obtained by slightly displacing the centers of two full cell structures and removing the 
overlapped portion from one cell structure. The leftover shell from a full cell structure keeps 
only a small fraction of the original cell volume, set at 10% or 20%, with the emptied space 
filled with the host medium. Consequently, these shell structures possess high degree of 
symmetry in their structures and yield stripe patterns in the simulated diffraction images of 
high symmetry in comparison to those by the full cell structures. It is hence clear that the 
stripe patterns in diffraction images are likely caused by large sized objects with a nearly 
homogeneous internal structure in terms of the refractive index distribution. When the 
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illuminated objects reduce their sizes, the speckle sizes increase invariably as demonstrated 
by the images shown from Figs. 2(c)-2(f). Despite the above variations, we conclude from our 
numerical study that the global patterns of the simulated diffraction images by the side 
scattered do not depend sensitively on the size of the objects, and the transition from the 
normal to large speckle patterns is associated with the categorical shift in object sizes from 
the neighborhoods of 10μm to 2μm. 

 

Fig. 2. The normalized cross-polarized diffraction images obtained through DDA simulations 
of light scattering by (a) a large cellular structure with nucleus and mitochondria and 
equivalent diameter d = 10μm; (b) a cellular “shell” structure with only 10% of volume of (a) 
after removing the overlapped region with another similar cell; (c) a stack of 4 parallel 
ellipsoids with long axial lengths d1 = 2.7, 3.0, 3.9, 4.0μm and short axial lengths d2 = 0.5μm; 
(d) angled stack of two identical ellipsoids of d1 = 3.0, 6.0μm and d2 = 0.5μm; (e) one ellipsoid 
of d1 = 4.0μm and d2 = 0.5μm; (f) a small homogeneous particles of cellular shape with d = 
1.1μm. Each image is labeled by polarization of the incident and scattered light, ratio of 
maximum to averaged pixel intensity. The insets are cross-section views of the objects (not to 
scale). 

To divide accurately the diffraction images into the three types of global patterns, we have 
developed an image processing method consists of four steps. In the first step, a normalized 
diffraction image I(z, y) was converted into a binary one B(z, y) using the average pixel 
intensity as the threshold. Afterwards, four Sobel operators given below for edge detection 
were applied to obtain the speckle borderlines or edges along four directions of horizontal (h), 
vertical (v), left diagonal (l) and right diagonal (r) respectively [30] 

 

1 2 1 1 0 1 0 1 2 2 1 0

0 0 0 , 2 0 2 , 1 0 1 , 1 0 1 .

1 2 1 1 0 1 2 1 0 0 1 2
h h l rG G G G

− − − − − −       
       = = − = − = −       
       − − −       

(7) 

By convoluting the four operators with B(z, y), one can derive a set of four directional edge 
images as Ea(z, y), where a = h, v, l, r, and a complete edge image ET(z, y) by summing the 4 
directional images. These images were made binary again by setting those pixels of maximum 
intensity for speckle borderlines to 1 against the background by all other pixels set to 0. 
Examples of the binary edge images are presented in Fig. 3(a). From the binary edge images 
the number of the pixels of 1 in each image can be quickly summed for a set of 5 borderline 
length parameters as [Cv, Ch, Cl, Cr] and CT. Once these parameters were obtained we can 
separate those images of the stripe patterns from the other two types of speckle patterns. This 
is accomplished by comparing two C parameters in a pair of edge images, [Cv, Ch] or [Cl, Cr], 
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consisting of mutually perpendicular directions. If the following conditions are satisfied in 
one pair of the C parameters 

 1 1 2and 0.3 ,thC C C C< <  (8) 

where C1 is the lesser of the two C parameters in the pair and Cth = 2500 is a threshold, then 
the diffraction image is declared as the stripe type with the stripe directions along or 
approximately along the direction of the edge image with C2. 

In the second step of image processing, additional parameters are extracted from I(z, y) in 
frequency space for accurate grouping the rest of the diffraction images according to the 
speckle sizes in real space. A 2D fast Fourier transform (FFT) was used to map I(z, y) into the 
frequency space (u, v) as 

 ( , ) ( , ) exp{ 2 ( )} ,F u v I z y i uz vy dzdyπ
∞ ∞

−∞ −∞

= − +   (9) 

from which a power spectrum image can be obtained as ( , ) | ( , ) |P u v F u v= . Analysis of the 
measured diffraction images led to the observation that the images of large speckle patterns as 
shown in Fig. 1(c) often contain bright spots of linear sizes of 150 or more pixels. 
Consequently, a frequency threshold was chosen as with Δ as the inter-pixel distance 

 
1 1

0.00667( ).
150( )th

f = =
Δ Δ

 (10) 

With fth we can derive a histogram N(f) of high frequency pixels in P(u, v) with f = (u2 + v2)1/2 
and N as the number of pixels with f > fth and P(u, v) > 0.02⋅P(0, 0). The later ensures that the 
selected high frequency pixels have intensities above the noise background. The sum of N(f) 
yields the number of pixels having high power and frequency, NP, in the power spectrum 
image P(u, v). Examples of edge images and N(f) for each of the three pattern types of the 
diffraction images are demonstrated in Fig. 3. 

 

Fig. 3. Measured diffraction images I of different pattern types with their binary edge images E 
and frequency histogram N(f): (a) a stripe pattern and its five binary edge images of different C 
parameters as labeled; (b) a normal speckle pattern; (c) a large speckle pattern. 

It is quite obvious that diffraction images with the normal speckle pattern tend to have CT 
and NP values larger than those of the images with large speckle patterns. Still we found the 
presence of noise due to spurious light and the large morphological variations of the imaged 
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objects can lead to significant fluctuations in the absolute values of CT and NP and their 
relative differences among samples of different cells. To achieve automated classification, 
one has to develop a calibration procedure to minimize the effect of these fluctuations. As the 
third step of image processing to be described below we have employed a k-means clustering 
technique [31] to rank and scale the extracted parameters of any given data set as the 
calibration procedure. 

The k-means clustering technique allows separation of all dots into k groups according to 
their distances to k centers under appropriate conditions [31]. If a dot is closer to one center 
than the others, it is assigned into a group represented by that center. In this study we utilize 
two 2D scatter plots of As(NP, CT) and Ap(NP, CT) on the NP-CT plane as shown in Fig. 4(a) or 
4(b) to represent a data set of diffraction image pairs measured with a cell sample. For 
comparison, we also present the simulated image pairs shown in Fig. 2 in the scatter plots of 
Fig. 4(a), which clearly indicates that the global patterns as characterized by the two 
parameters of NP and CT correlate strongly with the categorical sizes of the imaged objects. 

 

Fig. 4. Scatter plots of the diffraction image pairs in which the coloring of the dots represents 
the manual assignment by two of co-authors: (a) plots of 1000 image pairs acquired with a PC-
3 cell sample and a 45° polarized incident laser beam and 6 simulated image pairs shown in 
Fig. 2 with the cyan-up-triangle symbol for 2(a), pink-square for 2(b) and pink-down-triangle 
for 2(c) - 2(f); (b) plots of 951 measured image pairs shown in (a) after removal of 35 image 
pairs of stripe patterns and 14 pairs of over- or under-exposure. 

After removal of the image pairs of stripe patterns and over- or under-exposed pairs, the 
measured data set was re-plotted in Fig. 4(b) for subsequent analysis, which was also chosen 
as the reference set for calibrating other data sets as discussed below. To divide the image 
pairs into two pattern types with k = 2, two centers were initially assigned as (NPai, CTai) with 
a = s or p for each of the two plots. The initial centers were then updated by the averaged 
values of the NP and CT parameters in each plot and the process iterated until the two centers 
converged to the final values of (NPaf, CTaf). To reduce the effect of fluctuation in CT and NP, 
we modified the standard k-means clustering technique for the above iteration with two 
changes. First only those dots within a circle of radius R from a current center location were 
counted, with R determined empirically, to obtain the updated location. Secondly, the 
updating of the centers for the image type of large speckle patterns was limited to the region 
of small NP and CT based on the fact that these images cannot have large values. If the 
updating led to a new center for this group of dots outside the limited region, the initial center 
was used instead. 

The k-means clustering technique makes it possible to select automatically one polarized 
image group with tighter clustering along the right diagonal direction among the two groups 
of s- or p-polarized images as the higher ranked data for subsequent classification based on a 
SVM algorithm [23, 24]. This is due to the fact that the higher ranked group consists of 
images often with higher signal-to-noise ratios among the two and the extracted parameters of 
(NP1, CT1) yield better results of SVM classification [20]. For the data set shown in Fig. 4(a) 
or 4(b), the group of s-polarized images received the higher rank with 1 = s followed by 2 = p. 
After correct ranking, the SVM analysis can be performed using a classification vector of four 
parameters (NP1, CT1, NP2, CT2), for each imaged object. To further eliminate the need for 
training the SVM algorithm repeatedly for different data sets, we developed a method to scale 
a new data set according to the reference set shown in Fig. 4(b). Specifically, the four 
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parameters extracted from a cross-polarized diffraction image pair in the new data set are 
scaled as follows 

 ' and ' ,
Pif Tifref ref

Pi Pi Ti Ti
Pif Tif

N C
N N C C

N C
= =  (11) 

where i = 1 or 2, NPif and CTif are the averaged parameter values obtained by the k-means 

clustering analysis on the new data set, Pif ref
N  and Tif ref

C are the corresponding values of 

the reference data set. 
In the final step of image processing, a SVM based approach was applied for automated 

classification of the imaged objects into the two types of speckle patterns after removal of 
those with the stripe patterns using the calibrated parameters of (NP1′, CT1′, NP2′, CT2′). The 
SVM classifier was implemented by the LIBSVM library [24] with details described 
elsewhere [17, 20]. The SVM classifier was initially trained with 620 of the reference data set 
of 951 image pairs shown in Fig. 4(b) which were manually assigned into the two types of 
speckle patterns by two of the co-authors. Four different kernel functions were investigated 
for achieving accurate classification and it was found that the best results can be obtained 
with a linear kernel function. Through a five-fold training scheme [20] the criteria of 
classification were determined as the specific ranges of the calibrated parameter in (NP1′, CT1′, 
NP2′, CT2′). To evaluate the SVM classification performance against visual examination, we 
employed a parameter of classification accuracy A given as 

 ,
TP TN

A
TP TN FP FN

+=
+ + +

 (12) 

where TP is the number of correctly identified image pairs of normal speckle patterns, TN the 
number of correctly identified pairs of large speckle patterns, FP and FN respectively the 
number of incorrectly identified pairs of normal and large speckle patterns. The averaged 
values of A were found to be 97.1% and 97.6% for the training and test data groups of the 
reference data presented in Fig. 4(b). The image processing method trained with the reference 
data set has also been applied to another data set acquired from the same cell sample with 
horizontally polarized incident beam against visual examination. This data set contains 925 
image pairs and A was found to be 97.3% against visual examination. 

It should be noticed that in conventional flow cytometry the angle-integrated forward 
scatter signal is often used as the indicator of the volume of the measured objects while the 
side scatter signal can only indicate the degree of internal heterogeneity. From the simulated 
images shown in Fig. 2, it can be seen that the angle-integrated side scatter signal is 
equivalent to the average pixel intensity which indeed cannot be used as a useful indicator of 
the object’s volume or size. The results of the diffraction image analysis presented in this 
report, however, demonstrate clearly that the global patterns of these images provide reliable 
information about the size of the imaged object and morphology as well. As the last note, the 
software of image processing method described above has been developed on the Matlab 
platform (Version 7.1, MathWorks). The computation time was about 0.79s per image pair on 
a standard personal computer with 2GHz CPU and the calculation of C values is the most 
time consuming portion at 44%. We are currently optimizing the algorithms and 
implementing a GPU execution code to significantly increase the speed of image processing. 

4. Summary 

Through numerous measurement of cultured and primary cell samples with the DIFC method, 
we have observed two classes of pattern variations in the diffraction images measured along 
the side scattering directions. One is associated with the global patterns within the FOV and 
the other with local textures among neighboring pixels. In this report, we show theoretically 
that the variation of global patterns associates primarily to the categorical differences in the 
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cellular objects and, to a lesser degree, to the internal heterogeneity as well. An image 
processing method has been developed and presented for accurate and automated 
classification of measured diffraction images into three types of normal speckle, large speckle 
and stripe according to their global patterns. The method yields a critically important tool 
which allows automated and objective removal of the “abnormal” diffraction images of large 
speckle and stripe patterns due to most likely the fragmented cellular objects and debris 
before the detailed analysis of the images of normal speckle patterns [17, 20]. The latter is 
most likely associates with viable and intact cells and detailed analysis of the local textures by 
previously developed GLCM algorithm, among others, can enable accurate classification of 
cells according to their morphology. 
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